Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 28(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067542

ABSTRACT

Chagas disease (CD) is a worldwide public health problem, and the drugs available for its treatment have severe limitations. Red propolis is a natural extract known for its high content of phenolic compounds and for having activity against T. cruzi. The aim of this study was to investigate the trypanocidal potential of red propolis to isolate, identify, and indicate the mode of action of the bioactive compounds. The results revealed that the total phenolic content was 15.4 mg GAE/g, and flavonoids were 7.2 mg QE/g. The extract was fractionated through liquid-liquid partitioning, and the trypanocidal potential of the samples was evaluated using the epimastigote forms of the Y strain of T. cruzi. In this process, one compound was characterized by MS, 1H, and 13C NMR and identified as vestitol. Cytotoxicity was evaluated employing MRC-5 fibroblasts and H9C2 cardiomyocytes, showing cytotoxic concentrations above 15.62 µg/mL and 31.25 µg/mL, respectively. In silico analyses were applied, and the data suggested that the substance had a membrane-permeation-enhancing effect, which was confirmed through an in vitro assay. Finally, a molecular docking analysis revealed a higher affinity of vestitol with farnesyl diphosphate synthase (FPPS). The identified isoflavan appears to be a promising lead compound for further development to treat Chagas disease.


Subject(s)
Chagas Disease , Propolis , Trypanocidal Agents , Trypanosoma cruzi , Humans , Propolis/chemistry , Molecular Docking Simulation , Chagas Disease/drug therapy , Flavonoids/chemistry , Plant Extracts/pharmacology , Trypanocidal Agents/chemistry
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982196

ABSTRACT

Many activities have been described for propolis, including, antiviral, antibacterial, antifungal, anti-inflammatory, immunoregulatory, antioxidant and wound healing properties. Recently, propolis has been highlighted due to its potential application in the pharmaceutical and cosmetic industries, motivating a better understanding of its antioxidant and anti-inflammatory activities. Propolis and its main polyphenolic compounds presented high antioxidant activity, and effectiveness as broad spectrum UVB and UVA photoprotection sunscreens. Through a qualitative phytochemical screening, the ethanolic red propolis extracts (EEPV) (70% at room temperature and 70% at a hot temperature) presented a positive result for flavonoids and terpenoids. It presented an antioxidant activity for reducing 50% of DPPH of 17 and 12 µg/mL for extraction at room temperature and at a hot temperature, respectively. The UPLC-QTOF-MS/MS analysis allowed the annotation of 40 substances for EEPV-Heated and 42 substances for EEPV-Room Temperature. The IC50 results of the ABTS scavenging activity was 4.7 µg/mL for both extractions, at room temperature and at a hot temperature. Additionally, we also evaluated the cytotoxic profile of propolis extracts against macrophage (RAW 264.7 cells) and keratinocytes (HaCaT cells), which showed non-cytotoxic doses in cell viability assays even after a long period of exposure. In addition, propolis extracts showed antibacterial activity for Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), demonstrating potential biological activity for the creation of formulations aimed at disease control and prevention.


Subject(s)
Anti-Infective Agents , Ascomycota , Propolis , Propolis/pharmacology , Propolis/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Sunscreening Agents/pharmacology , Tandem Mass Spectrometry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
Mini Rev Med Chem ; 22(9): 1232-1255, 2022.
Article in English | MEDLINE | ID: mdl-34720079

ABSTRACT

The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinicalpathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.


Subject(s)
Antineoplastic Agents , Neoplasms , RNA, Long Noncoding , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology
4.
Phytochem Rev ; 20(5): 1013-1032, 2021.
Article in English | MEDLINE | ID: mdl-33867898

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China and its spread worldwide has become one of the biggest health problem due to the lack of knowledge about an effective chemotherapy. Based on the current reality of the SARS-CoV-2 pandemic, this study aimed to make a review literature about potential anti-coronavirus natural compounds guided by an in silico study. In the first step, essential oils from native species found in the Brazilian herbal medicine market and Brazilian species that have already shown antiviral potential were used as source for the literature search and compounds selection. Among these compounds, 184 showed high antiviral potential against rhinovirus or picornavirus by quantitative structure-activity relationship analysis. (E)-α-atlantone; 14-hydroxy-α-muurolene; allo-aromadendrene epoxide; amorpha-4,9-dien-2-ol; aristochene; azulenol; germacrene A; guaia-6,9-diene; hedycaryol; humulene epoxide II; α-amorphene; α-cadinene; α-calacorene and α-muurolene showed by a molecular docking study the best result for four target proteins that are essential for SARS-CoV-2 lifecycle. In addition, other parameters obtained for the selected compounds indicated low toxicity and showed good probability to achieve cell permeability and be used as a drug. These results guided the second literature search which included other species in addition to native Brazilian plants. The majority presence of any of these compounds was reported for essential oils from 45 species. In view of the few studies relating essential oils and antiviral activity, this review is important for future assays against the new coronavirus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11101-021-09754-4.

5.
Nat Prod Res ; 35(23): 5238-5242, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32241181

ABSTRACT

The aim of this study was to analyse the antitumor effect of the Cymbopogon densiflorus essential oil in silico and in vitro on bladder cancer cells RT4 and T24, with different TP53 status. The oil was extracted by hydrodistillation and the gas chromatography coupled to the mass spectrometry was used for characterisation. In silico analysis was carried out by Pass online software. Cytotoxicity, cell proliferation, cell cycle progression, apoptosis and wound healing assays were performed. Five major compounds were identified. In silico analysis showed that major compounds present high potential for antitumor activities. The treatment with C. densiflorus essential oil reduced cell viability of bladder cancer cells. Only in wild-type cells, the increase of apoptosis rates and the decrease of cell migration were observed. In conclusion, the C. densiflorus essential oil presents antitumor effects on TP53 wild-type and mutated bladder cancer cells, however, the mechanism of action is TP53 status-dependent.[Figure: see text].


Subject(s)
Cymbopogon , Oils, Volatile , Urinary Bladder Neoplasms , Apoptosis , Gas Chromatography-Mass Spectrometry , Humans , Oils, Volatile/pharmacology , Urinary Bladder Neoplasms/drug therapy
6.
Phytother Res ; 34(1): 94-103, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31713305

ABSTRACT

The research for new treatments of skin and soft tissue infections (SSTIs) is important due to their high prevalence and number of hospitalizations. The purpose of this review is to address the pathophysiology of SSTIs to highlight the advantages of herbal medicines to their treatment, showing examples of species and compounds with multi-targets action. SSTIs have a complex physiopathology involving the microorganism, as well as inflammation and difficult healing. Therefore, antimicrobial, anti-inflammatory, antioxidant and healing activities are an approach possible for their treatment. Herbal medicines have a wide diversity of biological compounds, mainly phenolic compounds that may act on different targets and also have synergism between them. Therefore, a single medicine may have the four key activities that allied allow eliminating the infection, control the inflammation process and accelerating the healing process, preventing complications with chronic infections.


Subject(s)
Herbal Medicine/methods , Plants, Medicinal/chemistry , Skin Diseases/drug therapy , Soft Tissue Infections/drug therapy , Humans
7.
Braz. J. Pharm. Sci. (Online) ; 56: e18474, 2020. tab, graf
Article in English | LILACS | ID: biblio-1249171

ABSTRACT

Due to the increase of bacterial resistance, the search for new antibiotics is necessary and the medicinal plants represent its most important source. The aim of this study was to evaluate the antibacterial property of extract and fractions from Protium spruceanum leaves, against pathogenic bacteria. By means of diffusion and microdilution assays, the crude extract was active against the nine bacteria tested being the hydromethanolic fraction the most active. During phytochemical procedures, procyanidin (1) and catechin (2) were identified as the main antibacterial constituents of this fraction. In silico results obtained using PASSonline tool indicated 1 and 2 as having good potential to interact with different targets of currently used antibiotics. These results no indicated potential to none DNA effect and indicated the cell wall as mainly target. Electrophoresis result supported that had no DNA damage. Cell wall damage was confirmed by propidium iodide test that showed increased membrane permeability and by cell surface deformations observed in scanning electronic microscopy. The in vitro assays together with the in silico prediction results establish the potential of P. spruceanum as source of antibacterial compounds that acts on important bacterial targets. These results contribute to the development of natural substances against pathogenic bacteria and to discovery of new antibiotics.


Subject(s)
Plants, Medicinal/adverse effects , In Vitro Techniques/methods , Plant Extracts/analysis , Catechin , Anti-Bacterial Agents/analysis , Computer Simulation , Microscopy, Electron, Scanning/methods , Plant Leaves/classification , Burseraceae/classification , Phytochemicals
8.
Braz. J. Pharm. Sci. (Online) ; 56: e18411, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132049

ABSTRACT

Antimicrobial and antitumor activities of resveratrol, a compound found mainly in grapes, have already been demonstrated. However, its low bioavailability is a limiting factor for therapeutic application. Polymeric micelles can be an approach to solve this problem since they can encapsulate hydrophobic substances. We developed and characterized micellar formulations containing resveratrol and evaluated their cytotoxic and antimicrobial effects. The formulations were prepared by the cold dispersion method with different concentrations of F127 (5 or 10% w/w) and resveratrol (500 or 5000 µM). The formulations were characterized according to size, polydispersity index, pH, encapsulation rate and in vitro release. Cytotoxic effect was evaluated on a bladder cancer cell line and antimicrobial effect was evaluated on E. coli, S. aureus and C. albicans. One of the formulations (10% w/w of F127 and 5000 µM of resveratrol) was a monodispersed solution with high encapsulation rate, thus it was chosen for the cytotoxicity and antimicrobial assays. MS- 10+RES-3 was able to preserve the antimicrobial and cytotoxic activity of resveratrol. This is the first study that evaluated antimicrobial potential and cytotoxicity of micelles containing resveratrol on bladder cancer cells and the results showed that micellar nanostructures could ensure the maintenance of the biological activity of resveratrol.


Subject(s)
Urinary Bladder Neoplasms , Cells , Resveratrol/analysis , Neoplasms/pathology , Solutions/administration & dosage , In Vitro Techniques/instrumentation , Cell Line/classification , Vitis/classification , Hydrogen-Ion Concentration , Micelles
9.
J Ethnopharmacol ; 241: 112024, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31181316

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Protium spruceanum (Burseraceae) is used in Brazilian traditional medicine as anti-inflammatory, but the factors involved in this activity were not yet characterized. AIMS OF THE STUDY: analyze the aspects involved in the anti-inflammatory activity of polar fractions obtained from extracts of leaves and branches. MATERIALS AND METHODS: Hydromethanolic fraction was obtained by liquid-liquid partition from crude ethanolic extract and its compounds were identified by LC-DAD-MS. Activity tests were performed using LPS + IFN-γ stimulated J774A.1 macrophages. Cytokines were evaluated by CBA kit, NO by Griess method, ROS by DCFH-DA, N-acetylglucosaminidase (NAG) activity by spectrophotometric method, matrix-metalloproteinase (MMP-9) activity by zymography, inducible nitric oxide synthase (iNOS) expression by immunofluorescence and cyclooxygenase (COX-2) expression by Western blot. RESULTS: Fractions induced an increase of IL-6 and IL-10 which leads to the control of pro-inflammatory cytokines levels. The treatment with the fractions also reduced NO production at all concentrations tested in all evaluated periods. ROS production by the macrophages was inhibited by the treatment and the leaves fraction showed the best results with a lower concentration than that observed for the branches. The enzymes assays showed that leaves fraction inhibited NAG and MMP-9 activities, as well as, iNOS and COX-2 expression. These activities can be associated with the presence of procyanidin, catechin, rutin, quercitrin, isoquercitrin and kaempferol-3-O-rhamnoside, major compounds that were identified in the fraction. CONCLUSIONS: Anti-inflammatory activity of P. spruceanum is associated to an immunomodulatory effect that leads to inhibition of ROS, NO, NAG, MMP-9, COX-2 and iNOS.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Burseraceae , Plant Extracts/pharmacology , Acetylglucosaminidase/metabolism , Animals , Cell Line , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Immunomodulation/drug effects , Matrix Metalloproteinase 9/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Leaves , Plant Stems , Reactive Oxygen Species/metabolism
10.
Food Chem ; 287: 61-67, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30857719

ABSTRACT

Propolis has demonstrated potential use as food preservative but it presents strong and unpleasant flavor that alters the sensory characteristics foods. A nanoemulsion was proposed to carry the Brazilian propolis extracts for use as natural food preservative. Antimicrobial and antioxidant activities and chemical constituents of the extracts were investigated. The latter were made by sequential extraction using different solvents (hexane, ethyl acetate and ethanol). Antimicrobial activity was evaluated by agar diffusion and microdilution methods and antioxidant activity by DPPH and ABTS assays. Extracts showed antibacterial and antioxidant activity, highlighting the ethanolic which contained artepillin-C, kaempferide, drupanin and p-coumaric acid as main compounds by LC-MS analysis. The nanoemulsion developed by phase inversion method was characterized and stable under thermal-stress and centrifugation conditions. Biological properties evaluated were effectively maintained by the formulation. It was concluded that the nanoemulsion can be used as a food preservative, preventing degradation and masking the propolis off-flavor.


Subject(s)
Anti-Infective Agents , Antioxidants , Food Preservatives , Propolis , Anti-Infective Agents/analysis , Anti-Infective Agents/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Emulsions/analysis , Emulsions/chemistry , Food Preservatives/analysis , Food Preservatives/chemistry , Nanotechnology , Propolis/analysis , Propolis/chemistry
11.
Nat Prod Res ; 32(16): 1951-1954, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28726498

ABSTRACT

The crude ethanol extract (CEE) and fractions from branches of Protium spruceanum were subjected to antibacterial and cytotoxicity assays. Compounds of the most active fraction were identified by GC-MS and LC-MS. CEE was active against 19 bacteria and the ethyl acetate fraction (EAF) showed the lowest minimum bactericidal concentration (MBC 0.3-80.0 mg/mL). Through time-kill assay was observed that EAF induced rapid bactericidal effect against Staphylococcus saprophyticus. The cytotoxicity tests against L929 fibroblasts showed great potential of EAF on the treatment of infections caused by five bacteria (MBC < IC50). The results provide in vitro scientific support to the possible application of branches of P. spruceanum as antimicrobial agent that may contribute for treatment of infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Burseraceae/chemistry , Plant Extracts/pharmacology , Animals , Bacteria/drug effects , Burseraceae/toxicity , Fibroblasts/drug effects , Mice , Microbial Sensitivity Tests , Plant Extracts/toxicity , Staphylococcus saprophyticus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...